Новости  
  Цель создания  
  Инициативная группа  
  Algor  
  Serge77  
  Дух Бетельгейзе  
  Maggot  
  Full-scale  
  Skywalker  
  Моторин  
  Джин  
  Timochka  
  Yahen  
  Lin  
  Demonos  
  Apollo  
  BlackRoger  
  Brayn  
  Lioxa  
  yfafyz  
  Metero  
  janus  
  Правила техники безопасности  
  Энциклопедия  
  Литература  
  Конструкции  
  Технологии  
  Переводы  
  Ссылки  
  Архив форумов сайта  
  On-line форумы сайта  
  Рокет-чат  
Ракетная мастерская
На титульную страницу  О мастерской    Подмастерья    Ресурсы    На сайте  
Поиск по сайту: 
  Оглавление  
 А  Б  В  Г  Д   Е  Ж 
 З   И  К   Л  М  Н  О 
 П  Р  С   Т  У  Ф   Х 
 Ц   Ч  Ш  Щ  Э   Ю   Я 
 A   B  C   D   E  F   G 
 H   I   J  K   L  M  N 
 O   P   Q   R  S   T   U 
 V   X   Y   Z   1   2   3 
 4   5   6   7   8   9   0 
  Водород , H2 , (LH2 -- американское обозначение)  

Молекулярный вес -- 2,016
Плотность -- 71 кг/м^3
Температура кипения -- 20,46 К
Использование пары O2-H2 предложено еще Циолковским.
С точки зрения термодинамики идеальное рабочее тело как для самого ЖРД, так и для турбины ТНА, при чем в последнем случае даже не обязательно высокой
температуры :). Отличный охладитель, при чем как в жидком, так и в газообразном состоянии. Последний факт позволяет не особо бояться кипения водорода в тракте охлаждения и использовать газифицированный таким образом водород для привода турбины. Высокий удельный импульс -- в паре с кислородом 3840 м/с. (Из реально используемых это самый высокий показатель). Эти факторы обуславливают пристальный интерес к этому горючему. Экологически чист в паре с экологически чистыми окислителями :). Распространен, практически неограниченные запасы. Освоен в производстве. Нетоксичен.

Однако есть очень много ложек дегтя.
1. Чрезвычайно низкая плотность. Все видели огромные водородные баки Энергии и Шаттла. Из-за низкой плотности применим на верхних ступенях РН. Кроме того низкая плотность ставит непростую задачу для насосов -- как правило насосы водорода многоступенчатые для того что бы обеспечить нужный массовый расход и при этом не кавитировать. По этой же причине приходится ставить т.н. бустерные насосы сразу за заборным устройством в баках дабы облегчить жизнь основному ТНА. Насосы водорода для оптимальных режимов требуют также очень высокой частоты вращения.
2. Низкая температура. Перед заправкой необходимо проводить многочасовое захолаживание баков и всего тракта. Я, кстати, видел результаты цифрового моделирования подачи водорода в "теплый" бак. Весьма мучительное занятие -- он то начинает заполнять, то испаряется и выталкивает все обратно. Также низкая температура кипения затрудняет хранение.
3. Жидкий водород обладает нек-ми свойствами газа -- жидкость сжимаема. Это накладывает дополнительные трудности в проектировании магистралей, циклограммы работы, и особенно насосов.
4. Из-за своего малого молекулярного веса очень проницаем. Это означает, что герметизировать полости с водородом довольно трудно. Ну что, скажете вы, неразъемные соединения можно загерметизировать. Но дело даже не в соединениях трубопроводов. Проблема в том, что на ТНА все щели не замажешь герметиком -- там применяются неконтактные уплотнения, особенно на высокооборотных ТНА. И тут эта проблема в купе с огнеопасностью смеси с кислородом встает довольно остро.
5. Большинство металлов имеют свойство поглощать водород -- т.н. процесс наводораживания. При этом металл охрупчается, т.е. его св-ва как КМ ухудшаются (а тут еще и низкая температура). Поэтому зачастую поверхности, контактирующие с водородом защищают покрытием, как правило серебром. Это естественно не лучшим образом сказывается на технологичности и стоимости двигателя.
6. Пожароопастность и взрывоопасность.
Водород и привлекателен, и неприятен :). Конструкторам хочется выжать из него все -- использовать и как рабочее тело турбины, и как охладитель, поэтому как правило конструкции водородников получаются довольно монстроидальными.